翻訳と辞書
Words near each other
・ Camillo Bonelli
・ Camillo Borghese, 6th Prince of Sulmona
・ Camillo Bozzolo
・ Camillo Bregant
・ Camillo Cabutti
・ Camillo Caccia Dominioni
・ Camillo Camilli
・ Camillo Camilliani
・ Camillo Carlsen
・ Camillo Casarini
・ Camillo Castiglioni
・ Camillo Ciano
・ Camillo Cibin
・ Camillo Cortellini
・ Camillo Cybo
Camillo De Lellis
・ Camillo De Riso
・ Camillo di Pietro
・ Camillo Eitzen & Co
・ Camillo Federici
・ Camillo Felgen
・ Camillo Filippi
・ Camillo Francesco Maria Pamphili
・ Camillo Gabrielli
・ Camillo Gargano
・ Camillo Gavasetti
・ Camillo Gioja Barbera
・ Camillo Girotti
・ Camillo Golgi
・ Camillo Gonsalves


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Camillo De Lellis : ウィキペディア英語版
Camillo De Lellis

Camillo De Lellis (born June 11, 1976) is an Italian mathematician who is active in the fields of calculus of variations, hyperbolic systems of conservation laws, geometric measure theory and fluid dynamics.
==Scientific activity==
De Lellis received his Ph.D. in mathematics from the Scuola Normale Superiore at Pisa, under the guidance of Luigi Ambrosio in 2002. He is currently professor of mathematics at the University of Zurich. De Lellis has given a number of remarkable contributions in different fields related to partial differential equations. In geometric measure theory he has been interested in the study of regularity and singularities of minimising hypersufaces, pursuing a program aimed at disclosing new aspects of the theory started by Almgren in his "Big regularity paper".〔(【引用サイトリンク】url=http://www.worldscientific.com/worldscibooks/10.1142/4253 )〕〔(【引用サイトリンク】url=http://www.ams.org/journals/memo/2011-211-991/S0065-9266-10-00607-1/ )
There Almgren proved his famous regularity theorem asserting that the singular set of an ''m''-dimensional mass-minimizing surface has dimension at most ''m'' − 2. De Lellis has also worked on various aspects of the theory of hyperbolic systems of conservation laws and of incompressible fluid dynamics. In particular, together with László Székelyhidi Jr., he has introduced the use of convex integration〔(【引用サイトリンク】url=http://www.encyclopediaofmath.org/index.php/Convex_integration )〕 methods and differential inclusions to analyse non-uniqueness issues for weak solutions to the Euler equation.〔(【引用サイトリンク】url=http://annals.math.princeton.edu/2009/170-3/p09 )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Camillo De Lellis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.